Regularity of minimal hypersurfaces with a common free boundary

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analytic regularity of a free boundary problem

In this paper, we consider a free boundary problem with volume constraint. We show that positive minimizer is locally Lipschitz and the free boundary is analytic away from a singular set with Hausdorff dimension at most n− 8. Mathematics Subject Classification (2000): 49Q20

متن کامل

On the Regularity of a Free Boundary Near Contact Points With a Fixed Boundary

We investigate the regularity of a free boundary near contact points with a fixed boundary, with C boundary data, for an obstacle-like free boundary problem. We will show that under certain assumptions on the solution, and the boundary function, the free boundary is uniformly C up to the fixed boundary. We will also construct some examples of irregular free boundaries.

متن کامل

On Finiteness of the Number of Stable Minimal Hypersurfaces with a Fixed Boundary

Can there be infinitely many minimal hypersurfaces with a given boundary in a Riemannian manifold? A number of previous results, positive and negative, already indicated that the answer depends on the definition of surface, on orientability, on stability and minimizing properties of the surface, on the smoothness and geometry of the boundary, and on the ambient manifold. 1. Finiteness for area-...

متن کامل

Minimal Hypersurfaces with Bounded Index

We prove a structural theorem that provides a precise local picture of how a sequence of closed embedded minimal hypersurfaces with uniformly bounded index (and volume if the ambient dimension is greater than three) in a Riemannian manifold (M, g), 3 ≤ n ≤ 7, can degenerate. Loosely speaking, our results show that embedded minimal hypersurfaces with bounded index behave qualitatively like embed...

متن کامل

Minimal Hypersurfaces with Finite Index

In an article of Cao-Shen-Zhu [C-S-Z], they proved that a complete, immersed, stable minimal hypersurface M of R with n ≥ 3 must have only one end. When n = 2, it was proved independently by do Carmo-Peng [dC-P] and FischerColbrie-Schoen [FC-S] that a complete, immersed, oriented stable minimal surface in R must be a plane. Later Gulliver [G] and Fischer-Colbrie [FC] proved that if a complete, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Calculus of Variations and Partial Differential Equations

سال: 2013

ISSN: 0944-2669,1432-0835

DOI: 10.1007/s00526-013-0685-6